
TECHNICAL GUIDE

...And How We
Fixed It
Production Patterns for
Groq Orpheus TTS

Companion to: "We Shipped Groq Orpheus TTS to

Production - Here's What Broke"

Ayush Jain & Bijoy Roy | Katonic AI Engineering Team

February 2026

1

SECTION 01

Contents

Overview

The Problem: What Broke

Root Cause Analysis

The Solution: Three Laws of State Management

Backend Implementation Patterns

Frontend Implementation Patterns

Testing Strategies

Production Checklist

Resources

2

SECTION 02

Overview

This guide provides the complete implementation patterns for deploying Groq Orpheus TTS in

production. It is the technical companion to our blog post detailing what went wrong when we first

shipped voice AI to production.

What You'll Learn
WebSocket lifecycle management patterns that prevent resource leaks

Audio streaming architecture using Web Audio API timeline scheduling

Idempotent cleanup functions that eliminate race conditions

Testing strategies that catch production bugs before deployment

A production-ready checklist for voice AI deployments

Prerequisites
Groq API access (api.groq.com)

Familiarity with WebSocket programming

Basic understanding of Web Audio API

Node.js backend (examples in JavaScript/TypeScript)

3

SECTION 03

The Problem:
What Broke

When we deployed Groq Orpheus TTS to production, we encountered a pattern of failures that did not

reproduce in development:

Issue Frequency User Report

Second message silent ~30% First plays, second is silent

Audio never completes Intermittent Agent stops mid-sentence

UI stuck on 'speaking' ~15% Speaking indicator never stops

STOP doesn't work Frequent Clicked stop but audio continued

Memory leaks Over time Server monitoring alert

Key Insight

These weren't five separate bugs. They were symptoms of one architectural

problem: unclear state ownership.

4

SECTION 04

Root Cause Analysis

Backend Issues
Every TTS request created a new WebSocket without closing previous ones

Event listeners accumulated because old ones were never removed

Stream completion was inferred rather than explicitly signaled

STOP commands were treated as advisory rather than authoritative

Frontend Issues
Complex buffering logic attempted to be 'smart' about audio chunks

Multiple async code paths competed for control

Playback timing based on heuristics rather than deterministic scheduling

UI state depended on assumptions rather than explicit signals

5

SECTION 05

The Solution: Three
Laws of State Management

Law 1: Ownership

Every resource must have exactly one owner at any given time. When ownership transfers, the

previous owner must explicitly release the resource.

Law 2: Cleanup

All cleanup functions must be idempotent. It must be safe to call cleanup multiple times without side

effects.

Law 3: Completion

Stream completion must be explicit, never inferred. The system must guarantee exactly-once delivery

of completion signals.

6

SECTION 06

Backend
Implementation Patterns

Pattern 1: Single WebSocket Per Session
Store the connection reference on the socket itself. When a new TTS request arrives, explicitly close

the previous connection before creating a new one.

Pattern 2: Centralized Idempotent Cleanup
Create a single cleanup function that can be called multiple times without side effects. This eliminates

race conditions.

Key Implementation Points:

Store connection reference: socket.data.groqWs = groqWs

Always cleanup before create: cleanupExternalConnection(socket)

Remove old listeners: socket.removeAllListeners('stop')

Track end signal: socket.data.endSignalSent flag

Verify ownership before emitting: if (socket.data.groqWs === groqWs)

Pattern 3: Authoritative STOP
When the client sends STOP, it must be authoritative - immediately close the WebSocket, terminate

the stream, and notify completion. No ambiguity.

7

SECTION 07

Frontend
Implementation Patterns

Pattern 1: Timeline-Driven Audio Playback
Schedule each audio chunk at a precise time on the AudioContext timeline. Never use 'start now' -

always calculate the next start time.

Key Implementation Points:

Track next start time: this.nextStartTime = startTime + duration

Prevent scheduling in past: Math.max(nextStartTime, currentTime)

Track active sources: this.activeSources = new Set()

PCM-native: Convert Int16 to Float32 directly, skip decodeAudioData

Pattern 2: Message-Scoped Audio Sessions
Every new message must reset the audio timeline completely. Clear previous sources and start fresh.

This permanently fixes the 'second message silent' bug.

Pattern 3: Explicit Stream Completion
Playback completes only when BOTH conditions are met:

The end-of-stream signal has been received

All scheduled audio sources have finished playing

Add a safety timeout in case the browser's onended event doesn't fire.

8

SECTION 08

Testing Strategies

Standard unit tests are insufficient for real-time systems. Implement these test patterns:

Test 1: Multi-Message Stress Test
Send 100 consecutive messages and verify no resource leaks. Check WebSocket count and memory

usage before and after.

Test 2: Rapid Interrupt Test
Issue STOP commands at random points during streaming. Verify immediate cleanup and proper end

signal delivery.

Test 3: Second Message Test
Specifically test that message 2 plays correctly after message 1 completes. Both should have audio

chunks.

Test 4: Chaos Test
Introduce random latency (50-500ms) and packet loss (10%) to verify graceful degradation. System

should remain functional after chaos ends.

9

SECTION 09

Production Checklist

Requirement Verification

Single WebSocket per session Connection count monitoring

Cleanup on new session Log cleanup calls

Idempotent cleanup Call cleanup 3x in tests

Exactly-once end signal Count signals in tests

Authoritative STOP Verify immediate termination

Timeline-driven playback No overlap in audio

Message-scoped sessions Test rapid consecutive messages

Safety timeout Simulate browser event failures

10

SECTION 10

Resources

Groq Documentation

Groq TTS API: console.groq.com/docs/text-to-speech

Orpheus TTS Guide: console.groq.com/docs/text-to-speech/orpheus

Orpheus Model

Canopy Labs GitHub: github.com/canopyai/Orpheus-TTS

Model: canopylabs/orpheus-arabic-saudi

Voices: Fahad, Sultan, Lulwa, Noura

Web Audio API

MDN Web Audio API: developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API

AudioContext scheduling: developer.mozilla.org/en-US/docs/Web/API/AudioBufferSourceNode/start

WebSocket Best Practices

Ably Guide: ably.com/topic/websocket-architecture-best-practices

The enterprise operating system for full-stack AI agents.

Any framework. Any model. Any cloud. Your code.

www.katonic.ai

