< Kartonic

TECHNICAL GUIDE

...And How We
Fixed It

Production Patterns for
Groq Orpheus TTS

Companion to: "We Shipped Grog Orpheus TTS to
Production - Here's What Broke"

Ayush Jain & Bijoy Roy | Katonic Al Engineering Team
February 2026



SECTION 01

Contents

Overview

The Problem: What Broke

Root Cause Analysis

The Solution: Three Laws of State Management
Backend Implementation Patterns

Frontend Implementation Patterns

Testing Strategies

Production Checklist

Resources

< Kartonic



SECTION 02

Overview

This guide provides the complete implementation patterns for deploying Grog Orpheus TTS in
production. It is the technical companion to our blog post detailing what went wrong when we first
shipped voice Al to production.

What You'll Learn

® WebSocket lifecycle management patterns that prevent resource leaks
Audio streaming architecture using Web Audio API timeline scheduling
Idempotent cleanup functions that eliminate race conditions

Testing strategies that catch production bugs before deployment

A production-ready checklist for voice Al deployments

Prerequisites

® Grog API access (api.grog.com)

® Familiarity with WebSocket programming

® Basic understanding of Web Audio API

® Node.js backend (examples in JavaScript/TypeScript)

< Kartonic



SECTION 03

The Problem:
What Broke

When we deployed Groq Orpheus TTS to production, we encountered a pattern of failures that did not
reproduce in development:

Issue Frequency User Report
Second message silent ~30% First plays, second is silent
Audio never completes Intermittent Agent stops mid-sentence
Ul stuck on 'speaking’ ~15% Speaking indicator never stops
STOP doesn't work Frequent Clicked stop but audio continued
Memory leaks Over time Server monitoring alert

Key Insight

These weren't five separate bugs. They were symptoms of one architectural
problem: unclear state ownership.

< Kartonic 3



SECTION 04

Root Cause Analysis

Backend Issues

® Every TTS request created a new WebSocket without closing previous ones
Event listeners accumulated because old ones were never removed
Stream completion was inferred rather than explicitly signaled

STOP commands were treated as advisory rather than authoritative

Frontend Issues

® Complex buffering logic attempted to be 'smart' about audio chunks
Multiple async code paths competed for control
Playback timing based on heuristics rather than deterministic scheduling

Ul state depended on assumptions rather than explicit signals

< Kartonic



SECTION 05

The Solution: Three
Laws of State Management

Law 1: Ownership

Every resource must have exactly one owner at any given time. When ownership transfers, the
previous owner must explicitly release the resource.

Law 2: Cleanup

All cleanup functions must be idempotent. It must be safe to call cleanup multiple times without side
effects.

Law 3: Completion

Stream completion must be explicit, never inferred. The system must guarantee exactly-once delivery
of completion signals.

< Kartonic



SECTION 06

Backend
Implementation Patterns

Pattern 1: Single WebSocket Per Session

Store the connection reference on the socket itself. When a new TTS request arrives, explicitly close
the previous connection before creating a new one.

Pattern 2: Centralized Idempotent Cleanup

Create a single cleanup function that can be called multiple times without side effects. This eliminates
race conditions.

Key Implementation Points:

@ Store connection reference: socket.data.groqWs = grogWs
Always cleanup before create: cleanupExternalConnection(socket)
Remove old listeners: socket.removeAllListeners('stop’)

Track end signal: socket.data.endSignalSent flag

Verify ownership before emitting: if (socket.data.grogWs === groqWs)

Pattern 3: Authoritative STOP

When the client sends STOP, it must be authoritative - immediately close the WebSocket, terminate
the stream, and notify completion. No ambiguity.

< Kartonic 6



SECTION 07

Frontend
Implementation Patterns

Pattern 1: Timeline-Driven Audio Playback

Schedule each audio chunk at a precise time on the AudioContext timeline. Never use 'start now' -
always calculate the next start time.

Key Implementation Points:

@® Track next start time: this.nextStartTime = startTime + duration

@® Prevent scheduling in past: Math.max(nextStartTime, currentTime)
® Track active sources: this.activeSources = new Set()
[

PCM-native: Convert Int16 to Float32 directly, skip decodeAudioData

Pattern 2: Message-Scoped Audio Sessions

Every new message must reset the audio timeline completely. Clear previous sources and start fresh.
This permanently fixes the 'second message silent' bug.

Pattern 3: Explicit Stream Completion

Playback completes only when BOTH conditions are met:
® The end-of-stream signal has been received
® All scheduled audio sources have finished playing

Add a safety timeout in case the browser's onended event doesn't fire.

< Kartonic



SECTION 08

Testing Strategies

Standard unit tests are insufficient for real-time systems. Implement these test patterns:

Test 1. Multi-Message Stress Test

Send 100 consecutive messages and verify no resource leaks. Check WebSocket count and memory
usage before and after.

Test 2: Rapid Interrupt Test

Issue STOP commands at random points during streaming. Verify immediate cleanup and proper end
signal delivery.

Test 3: Second Message Test

Specifically test that message 2 plays correctly after message 1 completes. Both should have audio
chunks.

Test 4: Chaos Test

Introduce random latency (50-500ms) and packet loss (10%) to verify graceful degradation. System
should remain functional after chaos ends.

< Kartonic



SECTION 09

Production Checklist

Requirement Verification

Single WebSocket per session Connection count monitoring
Cleanup on new session Log cleanup calls

Idempotent cleanup Call cleanup 3x in tests
Exactly-once end signal Count signals in tests
Authoritative STOP Verify immediate termination
Timeline-driven playback No overlap in audio
Message-scoped sessions Test rapid consecutive messages
Safety timeout Simulate browser event failures

< Kartonic ?



SECTION 10

Resources

Grog Documentation

® Groq TTS API: console.grog.com/docs/text-to-speech

® Orpheus TTS Guide: console.groq.com/docs/text-to-speech/orpheus

Orpheus Model

® Canopy Labs GitHub: github.com/canopyai/Orpheus-TTS
® Model: canopylabs/orpheus-arabic-saudi

® Voices: Fahad, Sultan, Lulwa, Noura

Web Audio API

® MDN Web Audio API: developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
® AudioContext scheduling: developer.mozilla.org/en-US/docs/Web/API/AudioBufferSourceNode/start

WebSocket Best Practices

@® Ably Guide: ably.com/topic/websocket-architecture-best-practices

< Kartonic

10



<~ Katonic

The enterprise operating system for full-stack Al agents.
Any framework. Any model. Any cloud. Your code.




