<~ Katonic

The Hidden
Architecture Problem
in Voice Al

Why State Ownership, Not Model Quality,

Determines Production Success

Anuja Fole | Katonic Al Engineering Team

February 2026

SECTION 01

Executive Summary

The voice Al market is projected to reach $13 billion by 2032, yet enterprise deployments continue to
struggle with production reliability. While industry attention focuses on model quality, latency benchmarks,
and feature comparisons, the most critical factor in production success is often overlooked: state
ownership clarity.

This paper presents findings from Katonic Al’'s engineering work integrating the Orpheus Arabic-Saudi TTS
model into our Katonic Studio. What began as a routine model integration revealed systemic architecture
challenges that affect any real-time voice Al deployment.

57 % $100B+ <500ms

Companies with Al agents Projected Al agents Required voice-to-voice
in production market by 2032 latency

We didn’t fix audio. We fixed state ownership. Real-time systems don’t fail because of missing features.
They fail because ownership is unclear.

The lessons learned apply broadly to any enterprise deploying real-time Al agents, voice assistants, or
streaming media applications.

< Kartonic

SECTION 02

1. The Voice Al Production Gap

Enterprise voice Al adoption is accelerating rapidly. According to recent industry research, 57% of
companies already have Al agents running in production, and Al agents are projected to grow from $3.6
billion in 2024 to over $100 billion by 2030.

Yet a significant gap exists between proof-of-concept and production deployment:

® Only 11% of enterprises have achieved full agentic Al deployment despite 65% having pilots
® Integration complexity remains the top barrier cited by enterprise leaders

® The performance bar is exceptionally high: sub-500ms voice-to-voice latency required for
natural interaction

@ Production requirements (scaling, governance, reliability) far exceed demo requirements

The Real Challenge

Industry analysts correctly note that cheap, fast, high-quality voices alone don’t automatically translate
into great real-time conversational products. A production-grade agent must capture audio, transcribe it,
plan a response, stream synthetic speech back, and handle interruptions—all in real time.

But even this framing understates the challenge. The real issue isn’t the complexity of the pipeline. It's the
clarity of ownership at every stage.

< Kartonic

SECTION 03

2. Case Study: Integrating Orpheus
Arabic-Saudi TTS via Groq

Katonic Studio enables enterprises to integrate any model, including specialized TTS models beyond
standard OpenAl voice options. When integrating the canopylabs/orpheus-arabic-saudi model via Groq's
inference infrastructure, we encountered challenges that illuminate broader patterns in real-time system
design.

Groq’s API delivers Orpheus TTS with exceptional speed, achieving up to 100 characters per second with
sub-200ms time-to-first-byte latency. The model offers four distinct Saudi dialect voices (Fahad, Sultan,
Lulwa, and Noura) with authentic pronunciation and regional nuances. On paper, this combination of Groqg’s
inference speed and Orpheus’s voice quality should deliver an exceptional user experience.

Why Groq + Orpheus

Groqg’s LPU (Language Processing Unit) inference engine delivers industry-leading speed for Al
workloads. Combined with Canopy Labs’ Orpheus Arabic-Saudi model, enterprises can offer
authentic Saudi dialect TTS with emotional expressiveness and low latency. This integration
represents the cutting edge of multilingual voice Al.

The Initial Implementation

The original system appeared straightforward: text sent to Groq’'s speech endpoint, Orpheus TTS
processing the request, audio chunks streaming back over WebSocket, and the browser playing them.
Groq’s infrastructure handled the model inference brilliantly, delivering audio chunks with minimal latency.

In development, it worked perfectly. In production, problems emerged:

Symptom Frequency in Production

First message plays, second message silent ~30% of sessions
Audio streams never completing Intermittent

Ul stuck in ‘speaking’ state indefinitely ~15% of sessions
STOP button not reliably stopping playback Frequent
WebSocket connections accumulating Memory leak over time

Root Cause Analysis

These weren't five separate bugs. They were symptoms of one architectural problem: unclear state
ownership.

Backend issues included: every TTS request creating a new WebSocket without closing previous ones;
event listeners accumulating because old ones were never removed; stream completion being inferred

< Katonic 3

rather than explicitly signaled; and STOP commands being treated as advisory rather than authoritative.

Frontend issues included: complex buffering logic attempting to be ‘smart’ about audio chunks; multiple
async code paths competing for control; playback timing based on heuristics rather than deterministic
scheduling; and Ul state depending on assumptions rather than explicit signals.

WebSocket Lifecycle — Before vs. After Refactor

Vioice Al TTS streaming architecture - Orpheus Arabic-Saudi via Grog

® BEFORE

Implicit State Management

Request 1 178 ® WebSocket #1 LEAKED Grog

Request 2 LS ® WebSocket #2 LEAKED Groq

Request 3 TS « WebSocket #3 AcCTIVE Grog
() WebSocket accumulation () Listener accumulation () Inferred completion () Advisory STOP
® AFTER

Deterministic State Ownership

O ©O : O O G

New TTS Close Previous Remowe Old Open Fresh Stream with Grog + Orpheus
Reguest WebSocket Listeners WebSocket Explicit End TTS
+ Single owner per resource ~ Idempotent cleanup + Authoritative STOP ~ Exactly-one end signal

[Figure 1: Architecture Diagram - WebSocket Lifecycle: Before vs. After Refactor]

< Kartonic

SECTION 04

3. The Solution: Deterministic
State Ownership

The refactor centered on one principle: make lifecycles explicit and deterministic.

Backend Architecture Changes

Single WebSocket Per Session

Instead of creating new WebSocket connections blindly, we store the connection reference on the socket
itself. When a new TTS request arrives, the previous connection is explicitly closed, all related listeners are
removed, and a fresh session starts cleanly.

Key Principle
Every resource (WebSocket, audio context, stream) must have a single, explicit owner. When
ownership transfers, the previous owner must explicitly release the resource.

Centralized, Idempotent Cleanup

We introduced a single cleanup function that clears pending timeouts, sends a final stream-end signal,
closes the external WebSocket safely, and can be called multiple times without side effects. This single
function replaced scattered cleanup logic spread across multiple event handlers.

Authoritative STOP

Previously, STOP was advisory. Now it’s authoritative. When the client sends STOP, the external WebSocket
is immediately closed, the audio stream is terminated, and the client is notified of stream completion—all
in a deterministic sequence.

Exactly One Stream End Signal

Regardless of how the external service finishes (text markers, binary silence, manual STOP, client
disconnect), the frontend receives exactly one end-of-stream signal. This contract proved to be the most
important architectural decision in the entire refactor.

< Kartonic

Frontend Architecture Changes

PCM-Native, Timeline-Driven Playback

We abandoned the complex buffering approach entirely. The new implementation accepts raw PCM only,
converts Intl6e to Float32, and schedules each chunk directly on the AudioContext timeline at precise
offsets. This eliminated buffering bugs and timing issues.

Explicit Stream Completion

Playback completes only when the end-of-stream signal is received AND all scheduled audio sources finish
playing. As a safety net, we added a timeout in case the browser’'s onended event doesn’t fire. This
provides a deterministic guarantee: the caller knows exactly when the voice has finished speaking.

Message-Scoped Audio Sessions

Every new message resets the audio timeline completely, clears previous sources, and starts fresh. This
permanently fixed the ‘second message is silent’ bug.

< Kartonic

SECTION 05

4. Broader Implications for
Enterprise Voice Al

The Architecture vs. Model Debate

Industry discussion often focuses on model selection: which TTS model has the lowest latency, the most
natural voice, the best multilingual support. These factors matter. Groq’s inference infrastructure genuinely
enables new categories of real-time applications. Orpheus delivers authentic Arabic speech that wasn’t
previously available at production speeds.

As one industry analysis noted, the main competitive frontier is infrastructure: who can deliver voices at
scale with the lowest latency and least friction. We would extend this: the competitive frontier is also
architectural. Infrastructure without clear state management creates fast failures instead of slow ones.

The Three Laws of Real-Time State Management

Based on this work and broader patterns in real-time systems, we propose three principles:

® Ownership Law: Every resource must have exactly one owner at any given time. When
ownership transfers, the previous owner must explicitly release the resource.

® Cleanup Law: All cleanup functions must be idempotent. It must be safe to call cleanup
multiple times without side effects.

® Completion Law: Stream completion must be explicit, never inferred. The system must
guarantee exactly-once delivery of completion signals.

These laws apply beyond voice Al to any real-time streaming system: video conferencing, collaborative
editing, live dashboards, multiplayer gaming, or loT telemetry.

Why Demos Work and Production Fails

Demos work because: network conditions are ideal; users follow expected patterns; sessions are short;
only one person is testing; and there’s no accumulated state from previous sessions.

Production fails because: network jitter introduces timing variations; users interrupt, retry, and behave
unpredictably; sessions last longer and span multiple interactions; concurrent users create resource
contention; and state accumulates across hundreds of sessions.

The gap between demo and production is the gap between implicit assumptions and explicit contracts.

< Kartonic

SECTION 06

5. Implementation Guidance
for Enterprise Teams

Checklist for Real-Time Voice Al Deployments

Single WebSocket per user session Connection count monitoring
Explicit cleanup on new session start Log cleanup calls

Idempotent cleanup functions Call cleanup 3x in tests
Exactly-once stream end signal Count end signals in tests

STOP command is authoritative Verify immediate termination
Timeline-driven audio scheduling No overlap in audio output
Message-scoped audio sessions Test rapid consecutive messages
Safety timeout for completion Simulate browser event failures

Testing Recommendations

Standard unit and integration tests are insufficient for real-time systems. We recommend:

® Multi-session stress tests: Send 100 consecutive messages and verify no resource leaks
@ |Interrupt tests: Issue STOP commands at random points during streaming

® Network chaos tests: Introduce latency and packet loss to verify graceful degradation

® Long-running soak tests: Run continuous sessions for hours and monitor resource
consumption

< Katonic 8

SECTION 07

6. Conclusion

The voice Al industry is at an inflection point. Models are becoming commoditized. The TTS market offers
dozens of options with sub-200ms latency and near-human quality. Infrastructure providers like Groq are
making model serving essentially a solved problem.

Our experience integrating Orpheus Arabic-Saudi TTS via Groq reinforced a lesson that applies far beyond
voice: real-time systems succeed or fail based on state ownership clarity. Groq delivered exceptional
inference speed. Orpheus delivered authentic Arabic voices. But the system didn’t work reliably until we
fixed how state was owned, transferred, and released.

For enterprises evaluating voice Al platforms, we suggest looking beyond model benchmarks to ask:
® How does the platform handle session lifecycle management?

® What happens when users interrupt mid-stream?

® How are stream completion signals guaranteed?

® What testing methodology verifies production reliability?

The answers to these questions will predict production success far more reliably than any latency
benchmark.

If you can’t clearly explain when something starts and when it ends, it will break in production.

< Kartonic

SECTION 08

About Katonic Al

Katonic Al is the sovereign enterprise Al platform, providing the operating system for full-stack Al agents.
Our platform enables enterprises to build, deploy, and govern Al agents with complete freedom: any
framework, any model, any cloud. Deployed 100% on your infrastructure with zero data egress, Katonic
serves regulated industries across 11 countries.

Katonic Studio allows enterprises to integrate any model, including specialized TTS models like Orpheus
Arabic-Saudi, into production-ready applications with enterprise-grade reliability, security, and governance.

Key Capabilities
250+ models supported with instant swapping

80+ pre-built Al agents with full source code

50+ knowledge connectors for enterprise data

[

o

® 100+ MCP servers for enterprise tool connectivity

o

® On-premise, private cloud, hybrid, and air-gapped deployment options
o

ISO 27001 certified, FIPS 140-2 compliant, HIPAA, GDPR, EU Al Act

Learn more at www.katonic.ai

< Katonic 10

https://www.katonic.ai

SECTION 09

References and Further Reading

Industry Reports and Market Analysis:

® TTS Al Model Market Outlook 2025-2032, Intel Market Research
@ State of Voice Al 2024, Cartesia

® The State of Al Agents in Enterprise Q3 2025, Lyzr

® G2's Enterprise Al Agents Report 2026

® Voice Al Market Map, Sierra Ventures

Technical References:

® WebSocket Architecture Best Practices, Ably
® TTS Voice Al Model Guide 2025, Layercode
® Orpheus TTS Documentation, Canopy Labs
® Groq Text-to-Speech APl Documentation

® OpenAl Realtime APl Documentation

< Kartonic

11

<~ Katonic

The Enterprise Operating System

for Full-Stack Al Agents

	The Hidden Architecture Problem in Voice AI
	Katonic_Voice_AI_Thought_Leadership_Brochure v2.pdf
	The Hidden Architecture Problem in Voice AI

